Prerequisites
- GCP account with billing enabled
- GCP project created
- IAM permissions configured
Setup Steps
1. Prepare GCP Environment
- Sign in: Google Cloud Console
- Create/select project: Use existing or create new project
- Set up IAM:
- Grant Vertex AI User role (
roles/aiplatform.user) - For service accounts, add Vertex AI Service Agent role (
roles/aiplatform.serviceAgent)
- Grant Vertex AI User role (
2. Choose Region and Enable Models
- Select region: Choose region for latency/compliance needs (e.g.,
us-east5,us-central1,europe-west1)- Use
globalendpoint for higher availability (Gemini only)
- Use
- Enable models: Go to Vertex AI → Model Garden and enable desired models (e.g., Claude 4.5 Sonnet v2)
3. Configure CodinIT
- Install CodinIT extension in VS Code
- Click settings icon (⚙️)
- Select GCP Vertex AI as API Provider
- Enter your Google Cloud Project ID
- Select your Region
- Choose your Model (e.g., Claude 4.5 Sonnet v2)
- Save and test
4. Authentication
Option A: User Credentials- Create service account in GCP Console
- Assign Vertex AI User and Service Agent roles
- Generate JSON key
- Set environment variable:
- Launch VS Code from terminal with this variable set
Supported Regions
us-east5(Columbus, Ohio)us-central1(Iowa)europe-west1(Belgium)europe-west4(Netherlands)asia-southeast1(Singapore)global(Global - Gemini only)
Notes
- Cross-region inference: Check “Cross Region Inference” for models requiring inference profiles
- First-time use: Some models (e.g., Anthropic) require submitting use case form via Console
- Permissions: Minimal required:
bedrock:InvokeModel,bedrock:InvokeModelWithResponseStream - Monitoring: Use CloudWatch and CloudTrail for logging and monitoring
- Security: Follow GCP IAM Best Practices
